Home > Blog > Common problem > Spiral Wound Torsion Springs: Everything You Need to Know

Spiral Wound Torsion Springs: Everything You Need to Know

source:Qianye Precision time:2023-6-10

Torsion springs are an essential component in many mechanical devices. They are used to provide rotational force or torque to power them. Among the different types of torsion springs, spiral wound torsion springs are the most common. They are used in various applications such as clothespins, mousetraps, balance scales, and other mechanical devices that require rotational force.

In this article, we will discuss everything you need to know about spiral wound torsion springs, including their definition, construction, properties, and applications.

Definition

A spiral wound torsion spring is a mechanical spring that is designed to rotate around an axis and exert torque in response to applied twisting forces. It works by storing mechanical energy in its coils when it is twisted, and it releases this energy when it is allowed to return to its original shape.

Construction

Spiral wound torsion springs are made up of a wire that is wound tightly around a mandrel or core. The wire is coiled in a helical pattern, creating a spiral shape. The number of coils and the diameter of the wire determine the spring\’s properties, such as its torque, deflection, and strength.

The wire used in spiral wound torsion springs is typically made of high-carbon steel, but it can also be made of stainless steel, brass, or other materials. The wire is chosen based on the application requirements, such as corrosion resistance, temperature resistance, or electrical conductivity.

Properties

Spiral wound torsion springs have various properties that make them useful for different applications. Here are some of the properties that you need to consider when choosing a spiral wound torsion spring:

1. Torque: The torque of a spiral wound torsion spring is the amount of rotational force that it can produce. It is determined by the wire diameter, the number of coils, and the material used.

2. Deflection: The deflection of a spiral wound torsion spring is the amount of movement or deformation that it can undergo before it reaches its limit. It is determined by the wire diameter, the number of coils, and the material used.

3. Strength: The strength of a spiral wound torsion spring is the amount of force that it can withstand before it deforms or breaks. It is determined by the wire diameter, the number of coils, and the material used.

4. Fatigue life: The fatigue life of a spiral wound torsion spring is the number of cycles or repetitions that it can undergo before it fails. It is influenced by the material used, the design, and the operating conditions.

Applications

Spiral wound torsion springs are used in many applications where rotational force is required. Here are some of the common applications of spiral wound torsion springs:

1. Clothespins: Spiral wound torsion springs are used in clothespins to keep them closed. The spring exerts a twisting force that holds the two halves of the clothespin together.

2. Mousetraps: Spiral wound torsion springs are used in mousetraps to power the mechanism that traps the mouse. The spring exerts a twisting force that holds the trap mechanism in place until the mouse triggers it.

 

 

3. Balance scales: Spiral wound torsion springs are used in balance scales to provide the counterforce that balances the weight being measured. The spring exerts a twisting force that opposes the weight being measured.

4. Electronic devices: Spiral wound torsion springs are used in electronic devices to provide the force required to activate switches or buttons. The spring exerts a twisting force that moves the switch or button into position.

Conclusion

Spiral wound torsion springs are a critical component in many mechanical devices. They provide the rotational force required to power them. Understanding the properties and applications of spiral wound torsion springs can help you choose the right spring for your application. Whether you are designing clothespins, mousetraps, or electronic devices, a spiral wound torsion spring can provide the torque you need to make it work.

Latest News

 The importance of springs to the aerospace industry
The importance of springs to the aerospace industry

Time:2022-9-23

       Springs are an important part of many different industries, including the aerospace industry. They form the backbone of many components and allow planes, drones, satellites, solar panels, aircraft controls, valves, throttles, and more to function their way. Without the spring, the industry would not be the same. Strict military and aviation guidelines mean that all components of...

 Variable Force Spring – The Ultimate Solution for Dynamic Applications
Variable Force Spring – The Ultimate Solution for Dynamic Applications

Time:2023-5-5

Variable force springs (also known as constant force springs) are a type of mechanical spring that provides a constant force throughout its range of motion. Unlike traditional springs that exert a different amount of force depending on their position, variable force springs maintain a consistent force throughout their extension and compression. These springs are incredibly versatile and can be used...

 Constant Force Linear Spring: An Introduction to Its Properties and Applications
Constant Force Linear Spring: An Introduction to Its Properties and Applications

Time:2023-6-13

Springs are ubiquitous in our daily lives, from the suspension system in cars to the mattress we sleep on. Springs are used in a variety of applications, but one type of spring that is not as well-known is the constant force linear spring. In this article, we will explore the properties of this spring and its various applications. What is...

 Spiral Wound Torsion Spring: A Comprehensive Guide
Spiral Wound Torsion Spring: A Comprehensive Guide

Time:2023-6-11

Spiral wound torsion springs are a type of mechanical spring that work by exerting a rotational force, or torque, when twisted or wound around an axis. These springs are commonly used in a variety of applications, including automotive and industrial machinery, as well as in household items like garage door openers and kitchen appliances. In this comprehensive guide, we will...

 Designing Constant Force Springs: Key Considerations and Best Practices
Designing Constant Force Springs: Key Considerations and Best Practices

Time:2023-6-25

Constant force springs are an essential component in various mechanical devices. These springs are designed to exert a nearly constant force over a wide range of motion, making them ideal for applications that require a constant force throughout the operating range. Designing constant force springs may seem simple, but there are key considerations and best practices that engineers must keep...

 Tailored Springs for Enhanced Precision in Medical Devices
Tailored Springs for Enhanced Precision in Medical Devices

Time:2023-10-26

Introduction Medical devices play a crucial role in diagnosing and treating patients. They are designed to provide accurate and precise measurements, ensuring optimal patient care. One key component that contributes to the precision of medical devices is the use of tailored springs. These springs are specifically designed and manufactured to meet the unique requirements of each medical device, resulting in...

Product