Huis > Blog > Bedrijfsnieuws > Design and Manufacturing of Spiral Wound Torsion Springs for High Performance Applications

Design and Manufacturing of Spiral Wound Torsion Springs for High Performance Applications

source:Qianye Precision time:2023-5-24

Design and manufacturing of spiral wound torsion springs for high performance applications are essential to ensure the proper function of various mechanical systems. Torsion springs are used in a wide range of applications, including automotive, aerospace, industrial, and agricultural equipment. These springs are designed to resist torsion, or twisting, forces and to provide rotational energy. Spiral wound torsion springs are particularly popular in high-performance applications due to their high strength, durability, and ability to handle high loads.

The design of a spiral wound torsion spring depends on several factors, including the required torque, the rotational speed, the space available for the spring, and the material properties. The spring should be designed to provide the required torque while maintaining a compact size and meeting the durability requirements. The spring\’s geometry, including the number of coils, the wire size, and the coil diameter, must be optimized to ensure that the spring can handle the maximum load without experiencing deformation or failure.

The manufacturing process of spiral wound torsion springs involves several steps, including wire forming, coiling, stress relieving, and finishing. The wire used for these springs is typically made of high-strength alloys, such as stainless steel, titanium, or Inconel. The wire is first formed to the required diameter and then coiled into the desired shape. The coiling process requires a high degree of precision to ensure that the coils are evenly spaced and have the correct pitch.

After coiling, the spring is heat-treated to relieve any residual stresses and to improve its strength and durability. The heat treating process involves heating the spring to a specific temperature and then cooling it slowly to allow the material to relax. The spring is then finished to the required specifications, including grinding, polishing, and coating.

 

 

The performance of spiral wound torsion springs can be enhanced by incorporating various design features, such as pre-stressing, variable pitch, and special end configurations. Pre-stressing involves compressing the spring before installation to increase its torque capacity and to reduce the risk of fatigue failure. Variable pitch allows for a more gradual load transfer and reduced stress concentrations, while special end configurations can improve the spring\’s attachment and performance.

In conclusion, the design and manufacturing of spiral wound torsion springs are critical to the proper function of various mechanical systems. These springs are used in a wide range of applications, including high-performance applications, and must be designed and manufactured to provide the required torque, durability, and reliability. By optimizing the spring\’s geometry, material properties, and manufacturing process, spiral wound torsion springs can be made to perform at their best in challenging and demanding applications.

Latest News

 Unleashing the Power of Constant Force Springs
Unleashing the Power of Constant Force Springs

Time:2023-5-7

Constant force springs are a type of spring that provides a constant amount of force throughout their deflection. They are commonly used in applications such as retractable seat belts, window shades, and medical devices. In this article, we will discuss the benefits of constant force springs and how they can be used to improve product performance. One of the key...

 The Force Constant of a Spring: What Is It and How Is It Calculated?
The Force Constant of a Spring: What Is It and How Is It Calculated?

Time:2023-5-18

The force constant of a spring is a measure of the stiffness of a spring and is often denoted by the symbol . It is defined as the force required to stretch or compress a spring by a unit length, and is typically expressed in units of newtons per meter (N/m) in the metric system or pounds per inch (lb/in)...

 Buy Variable Force Spring: The Perfect Solution for Adjustable Tension
Buy Variable Force Spring: The Perfect Solution for Adjustable Tension

Time:2023-7-30

Introduction In various industries and applications, the need for adjustable tension arises frequently. Whether it is in the field of manufacturing, automotive, or even medical devices, being able to regulate tension is crucial for achieving desired results. One of the most efficient and reliable solutions for adjustable tension is the variable force spring. This article aims to explore the benefits...

 Customized Springs: Tailoring Solutions for Your Unique Needs
Customized Springs: Tailoring Solutions for Your Unique Needs

Time:2023-6-29

Springs are an essential component in various industries, from automotive to aerospace, and even in everyday objects like pens and mattresses. They play a crucial role in providing stability, support, and flexibility in countless applications. However, not all springs are created equal, and sometimes off-the-shelf options may not meet specific requirements. That's where customized springs come in, offering tailor-made solutions...

 Design technology of high precision spring
Design technology of high precision spring

Time:2022-9-14

 Spring to ensure good elastic performance, that is, absorb a lot of elastic energy without plastic deformation; Sufficient plasticity and toughness to prevent impact fracture. According to the stress nature, the spring can be divided into tension spring, compression spring, torsion spring and bending spring. According to the shape, it can be divided into dish spring, ring spring, plate spring,...

 High Precision Springs manufacture: The backbone of precision engineering
High Precision Springs manufacture: The backbone of precision engineering

Time:2023-7-28

Introduction: In the realm of engineering, precision is the key to achieving accurate and efficient outcomes. One crucial element that plays a vital role in precision engineering is high precision springs. These small yet powerful components are often overlooked but are, in fact, the backbone of many precision instruments and machinery. In this article, we will explore the significance of...

Product